Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows
نویسندگان
چکیده
Third-order explicit autonomous differential equations in one scalar variable or, mechanically interpreted, jerky dynamics constitute an interesting subclass of dynamical systems that can exhibit many major features of regular and irregular or chaotic dynamical behavior. In this paper, we investigate the circumstances under which three dimensional autonomous dynamical systems possess at least one equivalent jerky dynamics. In particular, we determine a wide class of three-dimensional vector fields with polynomial and non-polynomial nonlinearities that possess this property. Taking advantage of this general result, we focus on the jerky dynamics of Sprott’s minimal chaotic dynamical systems and Rössler’s toroidal chaos model. Based on the interrelation between the jerky dynamics of these models, we classify them according to their increasing polynomial complexity. Finally, we also provide a simple criterion that excludes chaotic dynamics for some classes of jerky dynamics and, therefore, also for some classes of three-dimensional dynamical systems. @S1063-651X~98!09710-4#
منابع مشابه
Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملAlmost Periodically Forced Circle Flows
We study general dynamical and topological behaviors of minimal sets in skewproduct circle flows in both continuous and discrete settings, with particular attentions paying to almost periodically forced circle flows. When a circle flow is either discrete in time and unforced (i.e., a circle map) or continuous in time but periodically forced, behaviors of minimal sets are completely characterize...
متن کاملSimple Polynomial Classes of Chaotic Jerky Dynamics
Third-order explicit autonomous dierential equations, commonly called jerky dynamics, constitute a powerful approach to understand the properties of functionally very simple but nonlinear three-dimensional dynamical systems that can exhibit chaotic long-time behavior. In this paper, we investigate the dynamics that can be generated by the two simplest polynomial jerky dynamics that, up to thes...
متن کاملAnti-Synchronization of Complex Chaotic T-System Via Optimal Adaptive Sliding-Mode and Its Application In Secure Communication
In this paper, an optimal adaptive sliding mode controller is proposed for anti-synchronization of two identical hyperchaotic systems. We use hyperchaotic complex T-system for master and slave systems with unknown parameters in the slave system. To construct the optimal adaptive sliding mode controller, first a simple sliding surface is designed. Then, the optimal adaptive sliding mode controll...
متن کاملA numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کامل